

Adapting Vision Foundation Models for MICCAI2025 Real-time Ultrasound Image Segmentation

Xiaoran Zhang*¹, Eric Z. Chen², Lin Zhao², Xiao Chen², Yikang Liu², Boris Maihe², James Duncan¹, Terrence Chen², Shanhui Sun² 1. Yale University, 2. United Imaging Intelligence, *Work done during internship

Summary

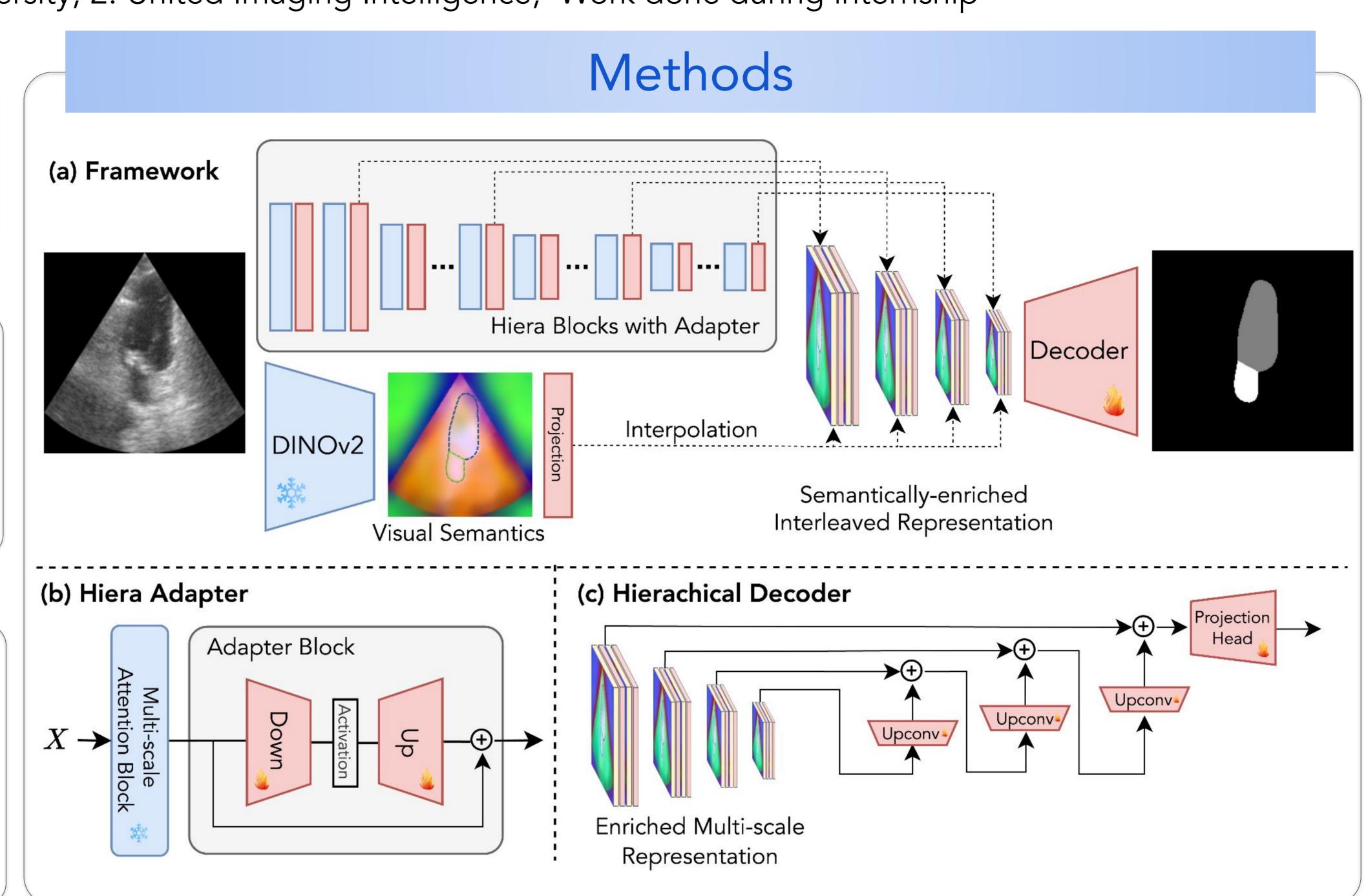
We propose a novel approach that adapts hierarchical vision foundation models for real-time ultrasound image segmentation.

Motivation

- Existing ultrasound segmentation methods often struggle with adaptability to new tasks, relying on costly manual annotations.
- Current real-time approaches fail to match state-of-the-art performance.

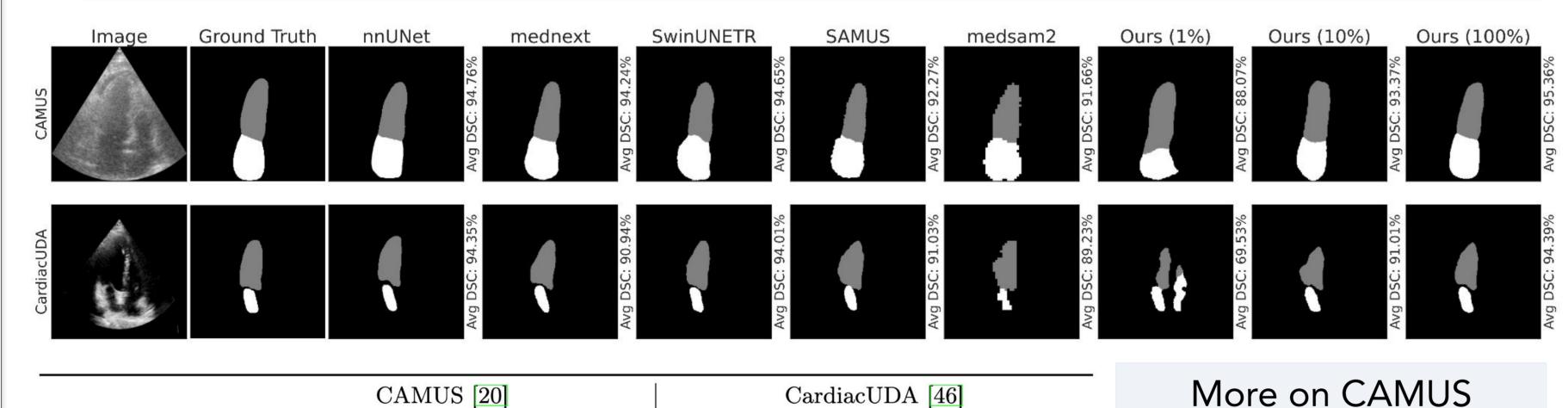
Contribution

- We propose an approach that adapts Hiera encoders and integrates DINOv2 feature for enhanced feature representation.
- Our method excels under limited supervision and achieves state-of-the-art performance on CAMUS and TN3K with real-time inference.



Results

Data efficiency and adaptability on cardiac ultrasound

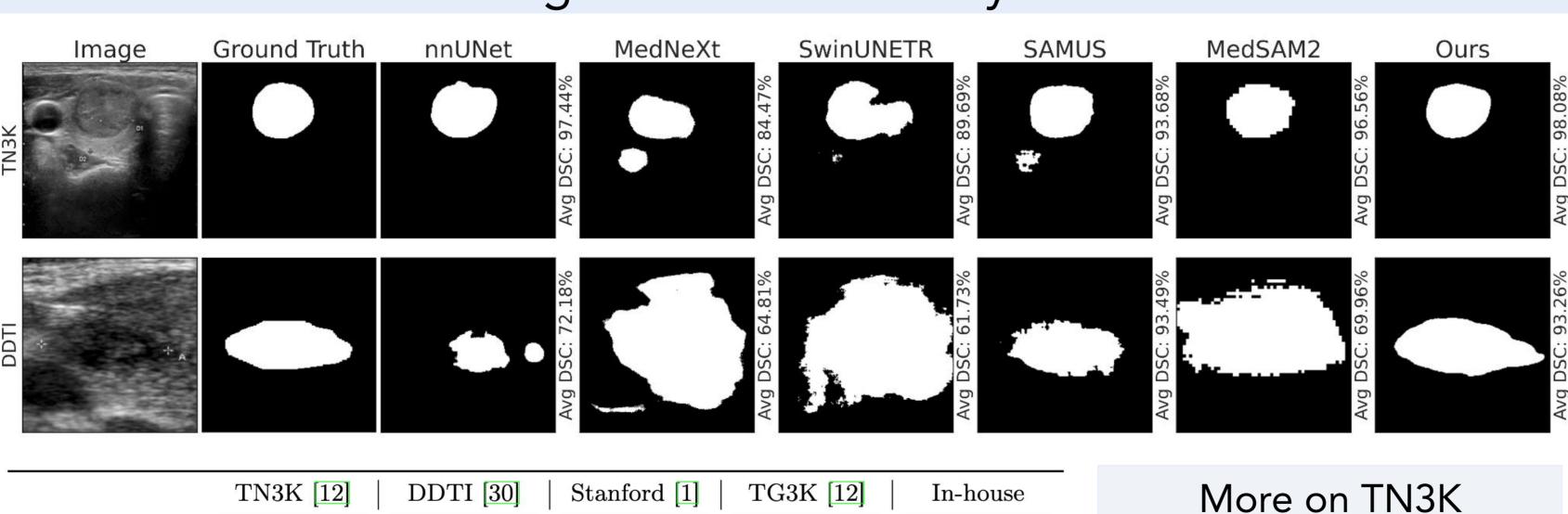


	w	CAMUS [20]					CardiacUDA [46]						
	19	%	10	10%		100%		1%		10%		100%	
	DSC ↑	$\mathrm{HD}\downarrow$	DSC ↑	$\text{HD} \downarrow$	DSC ↑	$\mathrm{HD}\downarrow$	$ { m DSC}\uparrow$	$\mathrm{HD}\downarrow$	DSC ↑	$\mathrm{HD}\downarrow$	DSC ↑	$HD \downarrow$	
UNet [35] nnUNet [16]									72.83 49.49				
MedNeXt [36] SwinUNETR [13]									70.97 81.44				
SAMUS [23] MedSAM2 [52] Ours		137.29	44.24	42.21	84.76	12.96	3.18	154.61	$\frac{82.10}{3.82}$ 82.38	151.34	75.78	12.95	
1							37						

Method	$\mathrm{DSC}\uparrow$	$\mathrm{IoU}\uparrow$	HD95 \downarrow	ASD
SwinUNet	88.84	80.33	6.10	2.60
H2Former	91.31	84.30	5.27	2.05
$\overline{\mathrm{MedSAM}}$	85.42	75.14	8.42	3.34
MSA	88.03	78.98	7.53	2.85
SAMed	87.45	78.14	9.17	3.10
SonoSAM	89.80	81.79	6.60	2.45
MemSAM	93.31	87.61	3.82	1.57
Ours	93.80	88.49	4.80	1.90

- Our approach remains highly effective under limited supervision, significantly outperforming baselines when trained with only 1% and 10% of the training data.
- We outperform existing state-of-the-art methods on CAMUS.

Cross-dataset generalization on thyroid ultrasound



	TN3	K [12]	DDT	Ί [<u>30]</u>	[30] Stanford [1]		TG3K [12]		In-house	
	$\overline{\mathrm{DSC}\uparrow}$	$\overline{\text{HD95}}\downarrow$	$ \mathrm{DSC}\uparrow $	$\overline{\text{HD95}}\downarrow$	$ \mathrm{DSC}\uparrow$	$\overline{\text{HD95}}\downarrow$	$ \mathrm{DSC}\uparrow$	$\overline{\text{HD95}}\downarrow$	$ \mathrm{DSC}\uparrow $	$\overline{\text{HD95}}\downarrow$
UNet [35]	67.93	41.26	48.43	52.60	89.09	18.96	70.27	65.88	68.50	60.72
nnUNet [16]	85.13	17.24	73.26	40.43	96.92	2.72	77.50	22.52	79.38	18.59
MedNeXt [36]	70.77	32.58	71.59	40.02	97.33	2.59	77.13	40.42	79.75	20.11
SwinUNETR [13]	71.84	37.89	70.59	41.76	97.63	2.52	69.72	43.37	76.21	39.52
SAMUS [23]	82.60	18.18	77.48	33.53	96.36	2.70	33.18	58.15	78.31	32.61
MedSAM2 [52]	69.02	31.43	69.69	39.02	87.20	9.58	75.86	21.10	79.47	18.70
Ours	86.01	15.43	81.52	26.68	97.33	2.23	83.04	12.55	82.59	17.11

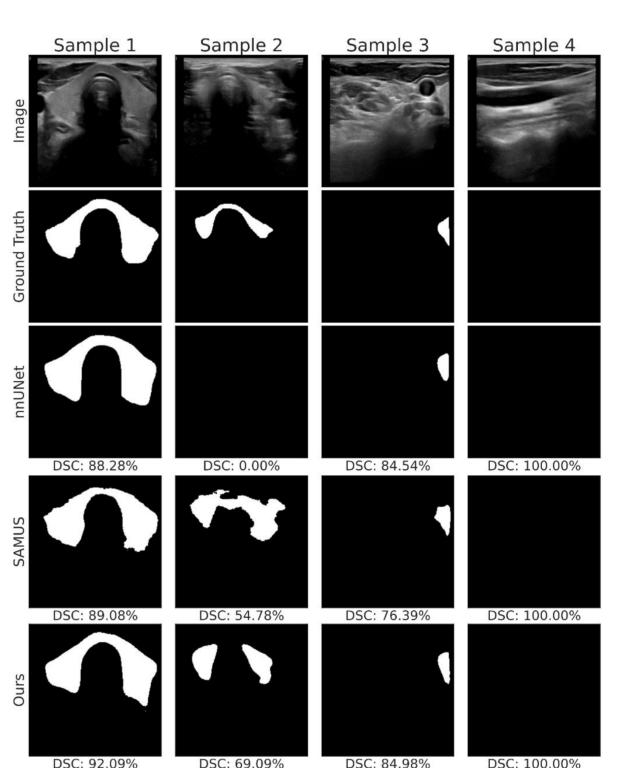
Method	ACC ↑	IoU ↑	$\mathrm{DSC}\!\!\uparrow$	HD95,
TRFE	96.71	68.33	81.91	17.96
SegNet	96.72	66.54	79.91	17.13
DeepLabv3	97.19	70.60	82.77	13.92
$\mathrm{TRFE}+$	97.04	71.38	83.30	13.23
SHAN	96.73	73.59	84.61	4.05

Ours

97.60 78.13 86.01 15.42

 Our method demonstrates strong generalization capability when trained on TN3K and tested on DDTI and outperforms existing state-of-the-art methods on other thyroid ultrasound datasets.

In house evaluation

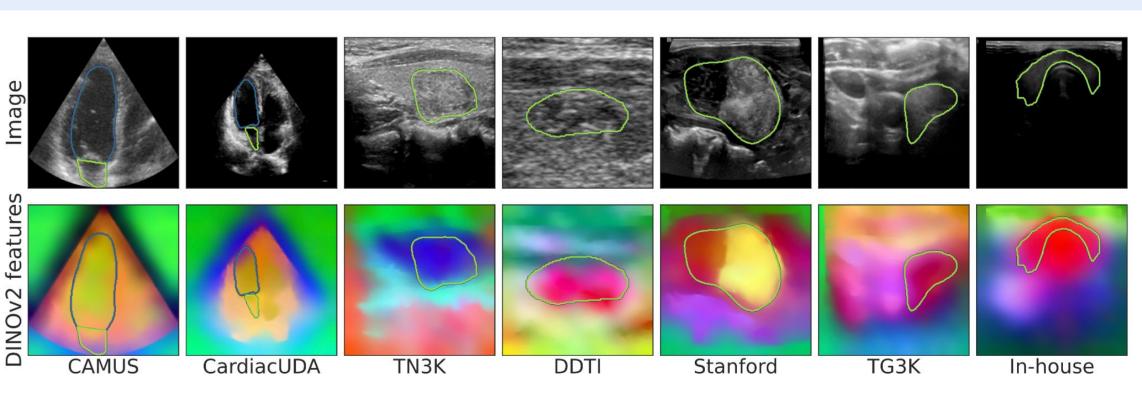


We evaluate real-world applicability using image-level detection metrics (precision, recall, specificity, F1-score) on an in-house dataset where the thyroid gland may be absent.

Model	1 recision	rtecan	opecificity	T-Score
UNet	64.75	93.92	12.41	96.86
$\frac{\text{nnUNet}}{}$	91.97	93.48	86.02	96.63
MedNeXt	93.90	86.96	90.32	93.03
SwinUNETR	62.09	95.61	0.00	97.75
SAMUS	99.71	98.26	$\boldsymbol{99.50}$	99.12
$\operatorname{MedSAM2}$	96.67	85.61	94.95	92.25
Ours	87.21	98.41	75.27	99.20

Precision \(\Delta \) Recall \(\Delta \) Specificity \(\Delta \) F1-Score \(\Delta \)

DINOv2 feature visualization



We visualize DINOv2 features via the first three PCA components, showing meaningful semantics for segmenting indistinct ultrasound boundaries.

Ablation study on CAMUS

H-Dec.	H-Adp.	DINOv2	Interleav	$e DSC\uparrow$	$\mathrm{HD}\downarrow$
X	×	X	X	78.23	30.98
✓	X	X	X	90.85	9.42
✓	✓	X	X	91.89	6.84
✓	✓	✓	X	91.90	6.78
✓	✓	✓	✓	92.01	6.75

(1) Hierarchical decoder (H-Dec.) (2) Hiera adapter (H-Adp.) (3) DINOv2 feature integration (4) Feature interleaving.

Inference speed

Our method runs at ~30 FPS on a single GPU (NVIDIA L40S) and ~77 FPS with TensorRT when tested on 224 × 224 images.

Methods	FPS
nnUNet	10
SAMUS	15
MedSAM2	17
Ours	30